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The assessment, control and mitigation of reaction 

hazards is primarily based on the use of kinetic models.  
These kinetic models are used for the assessment of re-
action hazards, the operation and control of the reac-
tor, the design of emergency relief systems, and estima-
tion of the consequences of a reaction runaway, to 
name a few. The validity of these assessments depends 
highly on the validity of the kinetic model employed.   

Several steps are required to identify a suitable ki-
netic model. This includes: 
• Selection of the model type. 
• Estimation of the model’s parameters using avail-

able data. 
• Validation of the model. 

This paper discusses each of these steps in detail 
and identifies problems associated with each step.  Sev-
eral practical examples are used to demonstrate these 
problems. 

The results show that:  1) the results are sensitive to 
a number of assumptions, 2) mistakes may originate 
from misinterpretation of the thermal data, and 3) com-
putational methods do exist to provide suitable kinetic 
models for hazard assessment. 

The analysis employed assumes a batch reaction 
system, since most of the kinetic data available is de-
rived from batch calorimetric equipment. 

Keywords: kinetics evaluation, parameters estima-
tion, simulation, hazard assessment 

INTRODUCTION 
One of the most important stages in the investigation 

of chemical reactions is the identification of a reaction 
kinetic model. These models may then be used for 
many important purposes, such as optimization of the 
chemical process, assessment of the reaction hazards, 
design of emergency relief systems (ERS), and so forth. 
The validity of these studies strongly depends on the 
reliability of the kinetic model which is defined by the 
proper choice of a mathematical model of the reaction 

and the validity of the methods used for the kinetics 
evaluation. Therefore, it is not surprising that many 
books and articles are devoted to various aspects of 
kinetic analysis [1-9]. A majority of these publica-
tions are related to data treatment in thermal analysis 
[1-6] or in chemical engineering [7-9]. A very lim-
ited number of articles are available that consider 
specific problems of kinetics evaluation for hazard 
assessment [10-15].  

Comparative analysis of these publications shows 
that the most in-depth approach to kinetics evaluation 
is used in chemical engineering. Quite comprehen-
sive methods are applied in thermal analysis, al-
though less attention is paid to the thermal mode of 
the sample. In general, kinetics evaluation methodol-
ogy for reaction hazards investigation is still charac-
terized by the use of the simplest models and sim-
plest methods for their creation (see for instance 
[14]). This occurs in spite of the fact that the results 
of a reaction runaway simulation are extremely sensi-
tive to small errors in the kinetics. This situation is 
improving as more and more publications appear dis-
cussing and demonstrating the advantages of the up-
to-date technique of kinetics analysis [15, 16].  Nev-
ertheless such advanced methods are still not com-
mon practice.  

This state of affairs suggests that the considera-
tion of problems relating to kinetics evaluation for 
hazard assessment with the focus on the specific fea-
tures of the data used and the final tasks to be solved 
remains a question of vital importance. Many aspects 
of kinetic evaluation have already been analyzed in 
detail and therefore there is no need to develop any 
new methods. What is really required is to carefully 
select the most appropriate and well grounded ones 
and make the necessary adjustments. This paper at-
tempts to achieve this. 

The general procedure intended for creation of a 
kinetic model includes four typical steps: 
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• obtaining and preparing experimental data; 
• choosing an appropriate kinetic model; 
• estimating parameters for the model that provide 

the best data fit; 
• selecting the most adequate model if several differ-

ent models have been proposed. 
The resulting model can then be applied to the prob-

lem at hand. To a large extent the kinetics evaluation 
for hazard assessment is coupled to the features of the 
final aim of the investigation. Simplified models that 
describe some overall characteristics of a reaction, like 
heat or gas generation, can be successfully applied for 
analysis of thermal stability, determination of critical 
condition of thermal explosion, etc. On the contrary, 
more detailed models capable of describing the time 
change in the mixture composition should be used for 
designing inherently safer processes, runaway simula-
tion in a reactor, or sizing relief vents because the time 
variation of the mixture composition and the corre-
sponding change of mixture properties may strongly af-
fect the process mode and therefore must be taken into 
account.  

CHOICE OF A KINETIC MODEL 
A chemist deals with wide variety of reactions that 

differ significantly from each other: homogeneous, het-
erogeneous catalytic, polymerization, biochemical; 
topochemical solid state reactions, etc. Different types 
of kinetic models should be used to take into account 
specific features of chemical reactions of different 
classes.  

Reaction hazards investigation deals usually with 
homogeneous or pseudo homogeneous reactions. Fur-
thermore, due to the lack of information about the proc-
ess (especially about secondary reactions) one has to 
apply a simplified kinetic model that does not describe 
the detailed mechanism, but can describe properly the 
main characteristics of a reaction. Two types of kinetic 
models are very pertinent in this case – formal and de-
scriptive ones. The choice between them depends on the 
knowledge about a reaction and on the final problem we 
are going to solve. 

Types of kinetic models: descriptive and formal 
models 

Descriptive Models 
Descriptive models are formulated in terms of con-

centrations and, therefore, can describe the reaction's 
mechanism in more detail. The applicability of these 
models can be expanded by accepting the generalized 
law of mass action (GLMA), i.e. the rate is proportional 
to the product of the concentrations raised to an order. 

GLMA includes the particular case of the exact law 
of mass action (LMA) when the orders coincide with 
the stoichiometric coefficients. For the multi stage 
reaction which is defined by the stoichiometric 
scheme  
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Here jiji  ,βν  are the stoichiometric coefficients 

of reactants and products of the j-th stage; jin  are 

the reaction orders, [Aji] denote the concentrations of 
species; )RT/Eexp(k)T(k j0jj −= is the rate con-
stant of a step. 

The model is supplemented with the correspond-
ing initial conditions and the response equations, that 
is, the equations that bound stage rates with the ob-
servable responses (heat or gas production, species 
concentrations, etc.): 
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Descriptive models can be applied to the reactions 
proceeding in a BATCH, semi-BATCH or continu-
ous stirred reactor functioning in various thermal 
modes. 

In order to use these quite powerful models, some 
requirements should be satisfied: 
• An initial idea regarding the chemistry of a reac-

tion should be formulated; 
• Experimental data on the calorimetric and con-

centration response must be collected. 
• Basic properties (Cp(T), density, molecular 

mass) of the species should be known. 
The descriptive models can be used for the analy-

sis of the thermal stability of a chemical product and 
the determination of reactive hazard indicators (e.g. 
NFPA reactivity rating, adiabatic time to maximum 
rate [16]). However, the advantages are maximized 
when these models are applied to the simulation of 
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runaway in a reactor equipped with ERS, design of in-
herently safer chemical process and its optimization, 
and so on. 

Formal models 
Formal models are based on the assumption that the 

conversion degrees are the state variables of a reacting 
system. Typically, we need to use such an approach 
when there is inadequate information for constructing a 
more detailed reaction mechanism, and only some over-
all responses (such as heat and gas generation) are 
available from experiment, but not the composition 
variation. Specifically such a situation occurs when in-
vestigating reactions in solids, secondary reactions that 
are triggered at elevated temperatures under accidental 
conditions, etc.  

Formal models can represent complex multi-stage 
reactions that may include several independent, parallel 
and consecutive stages. It is demonstrated by the fol-
lowing pattern: 
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A formal model is presented by the system of ordinary 
differential equations 

;r
dt
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supplemented with the appropriate initial conditions 
and the responses equations:  
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Let us cite some examples of formal models. 
1. Simple single-stage reaction A→B: 
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2. Reaction which includes two consecutive stages: 
A→B→C:  
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where α and γ are the conversions of the reactant 
A and product C respectively. 

3. Two parallel reactions A→B+… - initiation 
stage; A+B→2B+… - autocatalytic stage, that rep-
resent very useful model of full autocatalysis: 
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For simple, single stage reactions it is possible to 
establish a one-to-one correspondence between con-
centrational and formal model by using the algebraic 
transformation, thus allowing easy analytical data 
treatment. Historically, it was how formal models 
appeared. In the general case of more complex, 
multi-stage models, the transformation becomes im-
possible [8]; therefore complex formal models should 
be considered as a special class of kinetic models that 
don’t have any relations with concentrational ones. 
Today, numerical methods allow for the easy han-
dling of complex concentrational models and there is 
no urgent need to transform them to simpler forms. It 
is much safer and productive to completely separate 
two classes of models even in simplest cases.  

The nature of the formal models imposes restric-
tions on their applicability: 
• These models cannot take into account changes 

of composition of the reacting mixture due to 
non-kinetic reasons, such as feed of a reactant, 
removal of volatile components of a mixture, etc. 

• The created kinetics is valid only for the mixture 
composition investigated [6],  

• The models are only valid for analysis of 
BATCH reactors functioning in various thermal 
modes. They cannot be applied for simulation of 
semi-BATCH or continuous reactors; 

• They don’t allow reliable simulation of changes 
of physical properties of a mixture due to varia-
tion of its composition. 

Nevertheless, the formal models are very flexible 
and convenient to use. For instance, they are almost 
exclusively applied in the thermal analysis area. In 
reaction hazard assessment formal models can be 
successfully used for: 
• Analysis of thermal stability of a product and de-

termination of reactive hazard indicators. 
• Simulation of a runaway in a BATCH reactor. 
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• Simulation of thermal explosion in solids for hazard 
assessment related to their storage and transport. 
Moreover, with some precautions, formal models 

can also be used for simulation of thermal explosion in 
liquids or for runaway simulation in conjunction with 
vent sizing, when the mixture properties don’t depend 
strongly on its composition or when it concerns gassy 
systems, etc.  

Choice of the appropriate type of a model 
The following example illustrates how to choose be-

tween two types of models. Consider the esterification 
reaction, which was proposed for ERS round-robin test 
[17]: 
Isopropanol (I)+Propionic anhydride (P) 
→Isopropyl propionate (IP)+Propionic acid (PA)  (7) 

The kinetics is intended for simulation of the run-
away in a BATCH equipped with the ERS. Two adia-
batic data sets for different onset temperatures 25 0C 
and 35 0C have been used for kinetics evaluation. 
Thermal inertia for both these runs was the same: 
ϕ=1.09. 

At first the formal model of full autocatalysis (6a) 
coupled with the heat balance equation 

dt
dQ

dt
dT

c s
s

α
=ϕ ∞  (8) 

had been created assuming that the sample heat ca-
pacity is constant. It ensured satisfactory fitting of both 
data sets (Figure 1).  

 
Figure 1. Fitting data for the esterification reaction.  
(1)– onset temperature 35 0C; (2) - onset temperature  
25 0C;  - experimental points,  - simulation 

Nevertheless applying this model to runaway model-
ing and ERS design will give incorrect and unsafe re-
sults. The reason is that the properties of the reacting 
mixture depend on its composition, which changes 
along the reaction course. For instance, the overall va-
por pressure of volatile components, PV, at the initial 
composition is 2.1 bar at 120 0C; whereas, for the final 

composition at the same temperature PV = 0.9 bar. 
Therefore, sizing the vent will be incorrect if the 
variation of PV is not taken into account. The heat 
balance would be also incorrect because the mixture 
heat capacity significantly depends on its composi-
tion (the final value is 1.3 times higher than the ini-
tial one). 

The following descriptive autocatalytic model 
provides a proper description of the effects due to 
mixture composition and properties: 

stage ngaccelerati-self -n[PA]n[P]n[I]kr

   PA;2IPPAPI
stage initiation- n[P]n[I]kr  PA;IPPI

543

21

22

11  

=

+=++
=+=+

 (9a) 

2121 rr
dt

d[PA]
dt

d[IP]  ;rr
dt

d[P]
dt

d[I] +==−−== ; 

2211 rQrQ
dt
dQ ∞∞ +=  (9b) 

Here [I], [P], [IP] and [PA] denote concentrations 
of isopropanol, propionic anhydride, isopropyl 
propionate and propionic acid, respectively. It is as-
sumed (see the stoichiometric scheme (9a)) that the 
self-acceleration is caused by generation of the acid. 
The model provides a slightly better data fit because 
more accurate physical properties are used.  

The crucial role of physical properties in process 
simulation is well recognized [18, 19]. The less un-
derstood fact is that properties used for kinetics 
evaluation may also strongly affect the kinetic pa-
rameters. The most robust results of the whole study 
will be guaranteed if the same properties are used 
both for kinetics evaluation and for simulation. The 
following example demonstrates what may happen if 
this rule is not followed.  

Kinetic parameters of the model (9a) – (9b) have 
been estimated by using composition and tempera-
ture dependent mixture properties (variable proper-
ties). The properties of the mixture at current compo-
sition were calculated from the temperature-
dependent properties of species.  

The reaction course under pure adiabatic condi-
tions (ϕ=1) was then simulated for 3 cases:  
• using the same variable properties of the mixture 

(Figure 2, curve 1); 
• using the composition-dependent properties, that 

is, properties of the reacting mixture of the cur-
rent composition were calculated from constant 
species properties (curve 2); 

• using constant properties of the mixture (curve 
3). 
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It is clearly seen from Figure 2 that the physical 
properties have a dramatic affect on the reaction course. 
The use of approximate properties may result in unsafe 
estimates. In our case, the adiabatic time to maximum 
rate differed by as much as 20 to 30%.  

Correct calculation of mixture properties is possible 
when a descriptive concentration-based kinetic model is 
applied. A formal model cannot predict the change of 
mixture composition. In such cases one needs to use 
overall properties, in particular the heat capacity. Typi-
cally the properties are assumed to be constant. The 
question arises: which values should be used in this 
case. It was shown in [19] that for runaway simulation 
“the most accurate value of the heat capacity to use is 
half the value of the heat capacity at the start and at the 
end of the reaction”. Hence, the same value must also 
be used for kinetics evaluation. We followed this rec-
ommendation in this work. 

 
Figure 2 Effect of mixture properties on the prediction 

of adiabatic reaction course: (1) – composition and 
temperature dependent properties; (2) – constant prop-

erties of the species; (3) – constant properties of  
a mixture. 

Selection of a model 
Model selection arises when several competing 

models can be proposed and none of them are preferred 
a priori. This is one of general problems in reaction ki-
netics studies and is very typical for reaction hazard as-
sessment because the chemistry of a reaction is often 
unclear (especially if it involves secondary reactions). 
In such a situation it is very important to get as much 
data as possible under different conditions. Methods 
used for generating such complementary data depend 
on the type of experimental technique applied.  

In thermal analysis, experiments are carried out at 
several different heating rates or by using more com-
plex combined heating modes [3, 5, 6].  

In reaction calorimetry, it is a common practice to 
vary the initial composition of a reacting mixture [6] 

and the thermal mode (different initial temperatures, 
constant and programmed jacket temperature). 

In adiabatic calorimetry, it is recommended to 
change the initial temperature [19] or vary the initial 
composition of a mixture [15]. Another useful 
method is to vary the thermal inertia either by using 
different types of calorimetric cells (bombs), by vary-
ing sample masses, or by using different calorimeters 
(e.g. Phi-Tec or VSP for low-ϕ experiments and the 
ARC for experiments with higher ϕ). The combina-
tion of adiabatic and non-adiabatic (e.g. DSC) meth-
ods provides very useful data for model selection 
[15].   

Nevertheless, it is still a common practice in reac-
tion hazard investigations to rely on the results of a 
single adiabatic experiment. Therefore we will dis-
cuss the methods of model discrimination on the ba-
sis of data from adiabatic calorimetry. Two examples 
will be considered. 

Example 1. Selection of a formal model. 
Polymerization of a monomer has been studied by 

using the ARC. Only one experiment (ϕ=1.65,  
Tonset=50oC) was available. The self-heating rate 
curve (Figure. 3) reveals the complexity of the reac-
tion. The most likely model is the model of two con-
secutive stages. At first the formal model of two 
stages of the N-order type  
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had been evaluated. It provided a very good data 
fit (Figure 3). The only suspicious result was that es-
timates of both the activation energies seemed to be 
too high (E1≈150 kJ/mol, E2≈140 kJ/mol).  

 
Figure 3 Adiabatic data on the monomer polymeri-

zation;  - experimental points,  - simulation 

The temperature range of this reaction is 50-150 
oC whereas E>120 kJ/mol is more typical for reac-
tions that proceed at temperatures higher than 100 oC. 
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Such a high value for E may mean that the real reaction 
is autocatalytic and higher E compensates for the inabil-
ity of a chosen (non self-accelerating) model to describe 
chemical acceleration. 

Therefore the alternative model of two consecutive 
stages with the first autocatalytic stage (10b)  
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has been proposed. This model provides practically 
the same quality of data fitting but the activation ener-
gies are noticeably lower: E1≈110 kJ/mol, E2≈74 
kJ/mol. Additional experiments are required to allow 
model selection.  

 
a) 

 
b) 

Figure 4 Simulation of the discriminating experiments: 
(a) adiabatic experiment with ϕ=1.1; (b) DSC experi-
ment; (1) simulation based on the model (10a); (2) - 

simulation based on the model (10b); (3) – temperature 
ramp 

Consider at first the possibility of using adiabatic 
calorimetry for this purpose. In the case of the individ-
ual substance one cannot change its initial composition. 
The onset temperature cannot be changed directly - it is 
defined by the sensitivity of the calorimeter. The only 

possibility is to change ϕ by increasing the sample 
mass. The adiabatic experiment at ϕ=1.1 has been 
simulated by using both the competing models (10a) 
and (10b) coupled with the heat balance equation (8). 

The results (Figure 4a) demonstrate a significant 
difference in prediction provided by two models. The 
model (10a) suggests about 4.5 times higher maxi-
mum adiabatic self heat rate and 10 oC difference in 
temperatures at which the maximum rates are 
reached. It is evident that real experiments carried 
out under the proper conditions will allow easy selec-
tion of the model. 

Let us now suppose that we can study the sample 
in scanning mode by using the DSC. To reveal the 
discriminating ability of the DSC experiment, we 
simulated it by using both the models at a heating 
rate of 2 K/min starting at 50 oC (Figure 4b). As in 
the previous case the two models give distinctively 
different predictions and the DSC can be successfully 
used for model selection.  

Example 2. Selection of a descriptive model. 
The esterification reaction  

Methanol (M) + Acetic anhydride (A)  
→ Methyl acetate (MA) + Acetic acid (AA) (11) 

has been studied by using the Phi-Tec adiabatic 
calorimeter. Two data sets for different initial mix-
ture compositions (mole ratios M/A=2 and M/A=6) 
were available. In both these cases methanol was in 
excess and the unconsumed part of it acted as a ther-
mal diluent, therefore two data sets demonstrate sig-
nificant difference in adiabatic temperature rise (Fig-
ure 5). 

This time descriptive models should be used for 
kinetics evaluation because they are capable of ac-
counting for the change in initial composition.  

At first the kinetics was evaluated on the basis of 
the data set A (sample data) with M/A=2 whereas the 
data set B with M/A=6 (reference data) was used for 
kinetics validation.  

Esterification reactions of this kind are known to 
be autocatalytic [15, 19, 20] though autocatalysis is 
quite weak. Therefore the simple single stage N-
order reaction model  

 n[A]n[M]K  rAA;MAAM 21
11 =+=+ ;

11 rQ
dt
dQ ∞=  (11a) 

is often used for data fitting [21]. As can be seen 
in Figure 5a (curve 1, solid line) this model, after es-
timation of its parameters, fits the sample data very 
well, but it poorly predicts the reaction course for the 
conditions of the reference data (Figure 5a, compare 
curves 2 and 3). 
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A more complex two-stage autocatalytic model was 
then used consisting of the initiation stage (11a) and the 
self-accelerating stage (11b) 

 n[AA]n[A]n[M]Kr

  A;A2MAAAAM
543

22 =

+=++
 (11b) 

coupled with the complete response equation.  

2211 rQrQ
dt
dQ ∞∞ +=  (11c) 

It gives almost the same fit with the sample data 
(Figure 5b, curve 1, solid line) and ensures better pre-
diction of the reference data (Figure 5b, curve 4). 

 
        a) 

 
 b) 

Figure 5. Comparison of two models evaluated from 
the adiabatic data set A.  - experimental points, 

 - simulation; (a) –using the N-order model (11a); 
(b) – using the autocatalytic model (11a)-(11b); (1) - 
experiment A, M/A=2; (2) – reference experiment B, 

M/A=6; (3) – prediction of reference experiment by the 
model (11a); (4) - prediction of reference experiment by 

the model (11a) -(11b) 
If both the data sets A and B are used for evaluation 

of the autocatalytic model, the data fit is very good 
(Figure 6). The single-stage model cannot provide a 
comparable fit with the experimental data even if both 
the data sets were used for its evaluation. The autocata-
lytic model should be selected as the better model. To 

conclude this section we want to draw special atten-
tion to one important topic. The selection of a more 
adequate model is of general value for the following 
simulation but distinction between the autocatalytic 
model and the non-self accelerating one is particu-
larly important. The peculiarities of an autocatalytic 
reaction may have such a strong impact on the results 
that the use of specific approaches is required. For 
instance, a special theory of thermal explosion for 
autocatalytic reactions had to be created [22]. An-
other example can be found in [23]. It was demon-
strated that the use of a global Nth-order model in-
stead of more correct autocatalytic model may result 
in excessive overestimation of the venting area when 
designing the ERS for gassy systems. 

 
Figure 6 Data fitting by the autocatalytic model 

(11a)-(11b) evaluated from the data sets A and B. 
 - experimental points,  - simulation 

(1) - experiment A, M/A=2; (2)- experiment B, 
M/A=6 

CHOICE OF THE METHOD FOR ESTIMATING MODEL’S 
PARAMETERS 

Evaluation of kinetics on the basis of experimen-
tal data includes two main steps –identification of the 
model structure and estimation of the model’s pa-
rameters (kinetic parameters). 

There is no universal and well-formalized method 
for structure identification. Current methods depend 
on inspection of all the plausible models with the fol-
lowing selection using appropriate criterion. The es-
timation of a model’s parameters is one of the well-
developed areas of mathematics. This task requires 
finding estimates of the parameters that provide the 
best fit to experimental data. There are many alterna-
tive estimation methods, therefore, the challenge is to 
choose the most appropriate method that will give 
reliable resultant kinetics. 

Consider first the mathematical model of a 
BATCH process, which involves a simple Nth-order 
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exothermic reaction. This model includes the kinetic 
equation (12a) and the heat balance equation (12b) 
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in addition to the corresponding initial conditions. 
We consider here a simple formal model, but all the re-
sults will be equally valid for kinetic models of any type 
and complexity. 

From the formal point of view the model (12a, b) 
contains:  
• state (dependent) variables α and Ts measured with 

some errors in the course of an experiment (for de-
scriptive models concentrations will appear instead 
of conversions);  

• a control variable Te and control parameters US, ϕ, 
etc., that are known precisely,  

• a set of kinetic parameters ko, E, n, Q∞ that are sub-
ject to estimation.  
There is only one independent variable – time. The 

non-linear equation system (12a, b) should be integrated 
both for simulation of a process and for kinetic parame-
ters estimation. In the last case integration must be done 
dozens of times. This general approach is absolutely 
correct, but rather complex. In spite of its complexity, 
this approach is applied more and more often (see, for 
example, [1, 3, 6-9, 11, 13, 15]). 

Nevertheless, application of simplified time-
effective methods that don’t involve complex calcula-
tions remains very attractive and is often applied [4, 10, 
14]. Such methods should be used carefully, especially 
in hazard assessment area, for in many cases they may 
give incorrect and unsafe results. Therefore, we believe 
that a discussion of the basic features of these methods 
is appropriate. 

Simplified methods for parameters estimation 

Interpretation of sample temperature 
Significant simplification is achieved if sample tem-

perature can be considered as an independent variable. 
In this case one has to take into account only one ki-
netic equation (12a) and there is no need for numerical 
integration of the complete model. Many methods of 
kinetic evaluation based on this simplifying assumption 

are used very often without prior verification of its 
validity.  

The possibility to treat the sample temperature as 
an independent variable strongly depends on the in-
tensity of heat removal. Consider two cases using the 
modified form of the equation (12b). 

1. Heat is intensively removed from a reactor 
(specific heat transfer US/ms is very big) so that heat 
accumulation is negligible, Ts is very close to Te (Ts 
≈ Te ) and weakly depends on heat generation in the 
reactor. In this case, one can use Te instead of Ts or 
guess that Ts is the independent variable. Such con-
ditions are typical for small-scale laboratory reactors 
when the mass of a reactant is small (scanning or 
heat flux calorimetry with ms << 1 g are the exam-
ples) so that even if the heat removal US is moderate 
the specific heat removal term US/ms is large 
enough. 

2. Heat removal is tenuous. In this case, heat gen-
eration causes a deviation of Ts from Te. The extent 

of this deviation depends on US/ms and may vary 
from several degrees for isoperibolic mode to several 
tens or even hundreds of degrees for adiabatic condi-
tions  
(US/ms ≈0). For these types of data, Ts is principally 
the dependent quantity (state variable). Therefore the 
complete non-linear equation system (12a, b) should 
be used for kinetics evaluation and appropriate meth-
ods of non-linear optimization must be applied, oth-
erwise the kinetics obtained will be incorrect. 

Arrhenius linearization method 
One of the most popular methods that uses the as-

sumption about the sample temperature and conver-
sion as the independent variables is the Arrhenius 
linearization method. A model is linearized with re-
spect to the kinetic parameters by using the logarith-
mic transformation: 

1
s0 T

R
E)1ln(n)kln()

dt
dln( −⋅−α−⋅+=
α

  (13) 

and, if α, dα/dt and Ts are known, the kinetic pa-
rameters can be estimated easily by using the linear 
Least Square Method (LSM).  

The well-known limitation of this method is that 
it is applicable only to some single stage models (for 
instance, it doesn’t allow estimation of all the pa-
rameters of the single-stage autocatalytic model 
(6a)). There are other limitations, including: 
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1. Application of the LSM requires that the degree 
of conversion and sample temperature are known pre-
cisely and considered as independent variables.  

As conversions cannot be measured directly they 
should be evaluated from some measured responses. 
Usually conversion is calculated as the ratio of the cur-
rent value of a response to its final value (e.g. ratio of 
the current adiabatic overheating to its maximum value 
in an adiabatic experiment). Therefore, an experiment 
must be continued until the completion of the reaction, 
otherwise the estimate of the conversion will be incor-
rect. Furthermore, the precision of the calculated con-
version will depend on the precision of measurement 
and the features of the data; therefore, the application of 
conversion as an independent variable is questionable. 

2. It was shown earlier that there are only a few spe-
cial cases where the sample temperature can be treated 
as an independent variable. This cannot be done with 
respect to adiabatic data. Nonetheless, this assumption 
is often used for kinetics evaluation in adiabatic calo-
rimetry just by tradition, having been transferred from 
other areas of reaction investigation. 

A dramatic instance of the oversimplified approach 
to kinetics evaluation can be found in the recent article 
[14] where the global single-stage N-order model is ap-
plied in combination with the Arrhenius method to as-
sess the apparent activation energy, whereas the adia-
batic self-heating rate curve unambiguously reveals a 
complex multi-stage reaction. 

The following example demonstrates what may hap-
pen if the sample temperature in an adiabatic experi-
ment is interpreted as the independent variable.  

At first the kinetic parameters were estimated on the 
basis of adiabatic data (Figure 7) using the Arrhenius 
method. Due to errors in measurement the parameters 
were also calculated with some errors. Then the reac-
tion course was simulated by interpreting Ts as an inde-
pendent variable, that is, the experimental temperature 
was substituted in the kinetic equation (12a) for calcula-
tion of the rate constant. The simulated curve (Figure 
7a, solid line 1) deviates only slightly from the experi-
mental points because the calculated reaction rate dif-
fers from the true one due to error in the activation en-
ergy.  

The reaction course was then simulated by numeri-
cal integration of the complete process model. Specifi-
cally, Ts was calculated from the heat balance equation 
(12b). The resulting curve (Figure 7a, dotted line 2) is 
shifted significantly compared to the experimental 
curve. Why did it happen?  

In the first case the error in the activation energy 
causes only a small deviation in the reaction rate.  

In the second case the same variation in the reac-
tion rate results in a change in Ts. The variation in Ts 
changes the reaction rate. Because of the exponential 
dependency of the reaction rate on Ts, this feedback 
significantly magnifies the influence of the parameter 
errors, i.e. significant parametric sensitivity of the 
simulation results is observed (see [12] for mode de-
tailed consideration).  

Nevertheless, it may seem that the simplified 
method of calculation can be applied because it gives 
a reasonable correspondence with the experimental 
results - but it would be misleading. The main pur-
pose of simulation is to predict the reaction course 
under conditions of practical interest that differ from 
experimental conditions. Therefore, there is no other 
way to obtain the necessary results but to use the 
complete process model.  

 
a) 

 
b) 

Figure 7. Inapplicability of the Arrhenius method for 
kinetics evaluation in adiabatic experiment. 

 - experimental points,  - simulation  
(a) heat release in the reaction course; (b) heat gen-
eration rate (Arrhenius plot). (1) - simulation based 
on the simplified model; (2) - simulation based on 

the complete model 
The general approach discussed earlier considers 

the complete model of a process. When it is applied 
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to parameters estimation, the parameter’s sensitivity is 
automatically taken into account; therefore, estimates 
obtained are more reliable and suitable for simulation.  
Examples of application of such an approach for kinetic 
analysis of adiabatic data can be found in [11, 13].  

Attention should be given to one important feature. 
The temperature profiles of a reaction are alike, but 
shifted along the time axis with respect to one another. 
Therefore, the Arrhenius plot (Figure 7b) of the reaction 
rate versus reciprocal temperature, which is typically 
used for data analysis in adiabatic calorimetry, shows 
only a small difference between the curves. This is one 
of the reasons why it is hard to discover the deficiency 
of the Arrhenius-like methods. 

Applying non-linear optimization methods for pa-
rameters estimation 

The general approach to kinetics evaluation is based 
on non-linear optimization. We will discuss here only 
the main features and some important problems dealing 
with application of non-linear estimation. Please refer to 
[1, 6-8, 24] for more details. 

The aim of the estimation procedure is to find values 
of the parameters that ensure the best fit to the experi-
mental data. To achieve this goal one should minimize 
some measure of residuals between experimental and 
simulated responses. The majority of non-linear optimi-
zation algorithms are based on the Least Squares 
Method (LSM) which uses the sum of squares of re-
siduals as the measure. Therefore, the sought for esti-
mate of the parameters vector rP  is determined by 
minimizing the objective function SS: 
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were SS( P ) denotes the weighted sum of the 
squares of the residuals; Yexp(ti ) is the value of the ex-
perimental response at t=ti (i-th experimental point); 
Ysim ( P ,ti) is the value of the simulated response at 
t=ti; (Y denotes the sample temperature, heat or gas re-
lease, concentrations, etc.); εi represents the experimen-
tal error for the i-th point; 

The condition of the SS minimum is defined by the 
system of non-linear algebraic equations: 

0P)/(SS j =∂∂ P ; j=1,...,L; (15) 

where Pj is j-th component of the parameters vector. 
The objective function can be expanded to cover 

data of several multi-response experiments: 
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where SSk is the objective function for the k-th 
data set; this accounts for the contribution of all the 
responses of the set, ϖk is its statistical weight; 

)t(Y i
kj
exp  is the value of the j-th response at i-th ex-

perimental point; )t(Y i
kj
sim  is the value of the j-th 

simulated response at t=ti; εkji is the experimental er-
ror for i-th point of the j-th response; ϖkj is the statis-
tical weight of the j-th response. Moreover, the ob-
jective function can include not only responses of 
different physical quantities, but also integral and de-
rivative responses of the same physical quantity. 

It should be emphasized that the possibility to si-
multaneously treat data from several experiments and 
responses of a different physical nature is very im-
portant because it allows utilizing universal informa-
tion about the reaction, thus providing more adequate 
resulting kinetics. 

For a non-linear kinetic function )t,(Ysim P  the 
system (15) is non-linear and can be solved only nu-
merically. It represents a very difficult mathematical 
problem. Therefore, non-linear optimization is usu-
ally applied. A multitude of methods of this kind 
have been created so that there is no need to develop 
any new methods  – the problem is to choose the 
most appropriate from the existing ones that would 
satisfy the problem features. 

Constraints on the parameters.  
The problem (16) represents the absolute extreme 

problem when the minimum is sought through the 
whole domain of parameters. It may result in very 
time consuming calculations and finding the formal 
solution with the parameters that don’t have any 
physical sense. Therefore the optimization method 
must allow imposing the constraints on the parame-
ters to limit their tolerance range: 

max
j

min
jj PPP ≤≤  (17) 

Some other constraints that bound one or another 
group of parameters may be useful as well. For ex-
ample, sometimes it is expedient to demand that acti-
vation energies of some stages of the multi stage 
model be equal to each other. 
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Choice of the initial guess.  
Non-linear optimization requires assignment of the 

initial guess on parameters, which is different from lin-
ear estimation. The effectiveness of the parameter esti-
mation depends highly on the location of the initial 
guess on the surface of the objective function SS repre-
senting dependence of the SS on parameters. 

If the initial guess is located far from the minimum, 
and the surface is flat, it is difficult to find the true di-
rection to the minimum. Quite the contrary, if the initial 
guess had been selected successfully, the direction can 
be determined easily and the solution will be found 
quickly. The “ideal” optimization method should be 
equally capable to start from the “bad” initial point and 
to find the precise position of the minimum. In practice, 
several mutually complimentary methods must be ap-
plied: one of them should easily detect proper direction 
to the minimum from the initial point; the other one 
should be efficient near the minimum. 

Non-uniqueness.  
If experimental data were measured without errors, 

and the reaction model were exact, the estimation prob-
lem would always have a unique solution. In reality, 
data are measured with some error and some approxi-
mate models are used. It may result in the appearance of 
several local extremes instead of one global extremum; 
that is, the solution turns out to be non-unique. 

The non-uniqueness cannot be predicted a priory. 
The only method that reveals the non-uniqueness is by 
scanning the domain of parameters definition; that is, 
estimating the parameters starting from different initial 
guesses. If several extremes are found, then the parame-
ters vector that corresponds to the minimal value of the 
objective function should be taken as the final solution. 

Overview of two efficient optimization methods 
Two optimization methods demonstrate their effi-

ciency for application to kinetics evaluation and can be 
recommended for use. They are the modified Newton-
Gauss method [25, 26] and the Tensor method [27, 28]. 
Both of these are based on linearization of the SS func-
tion by applying expansion in the Taylor series with the 
following iterative solution of the optimization problem 
(16) where the Taylor series substitutes for the original 
SS function. On every step the corrections vector is cal-
culated followed by determination of the new estimate 
of the parameters vector.  

The Newton-Gauss method uses only the two high-
est terms of the Taylor series. A good approximation of 
SS occurs if the expansion is made in the vicinity of the 
solution. Therefore, the Newton-Gauss method demon-
strates fast convergence to the minimum and ensures 

efficient and accurate estimates of the parameters if 
the initial guess is reasonably close to the sought for 
vector. Otherwise, the method may fail in detecting 
the true direction to the minimum. 

The Tensor method uses the three highest terms 
of the Taylor series. It results in much better detec-
tion of the descent direction and, hence, in a more 
successful start of optimization even from a rough 
initial guess of the parameters. In some cases this 
method is less efficient in the vicinity of the mini-
mum (requires more iterations and results in less pre-
cise estimates). Therefore, these methods represent a 
good example of mutually complimentary ones.  

An important advantage of both these methods is 
that they allow imposing linear constraints to limit 
the tolerance range of the parameters. In addition, the 
Tensor method allows applying more complex con-
straints of the inequality type on the combinations of 
the parameters. 

General features of kinetics evaluation using non-
linear optimization 

The general approach to kinetics evaluation based 
on integration of the complete reactor model in com-
bination with non-linear methods for estimation of 
the model parameters has numerous advantages, spe-
cifically:  
• it is applicable to various classes of kinetic mod-

els of any complexity; 
• it allows simultaneous use of several data sets 

obtained at various thermal modes and even by 
using different types of experimental methods; 

• it results in more reliable estimates of the kinetic 
parameters even in extreme cases. 

The main problem that impedes application of the 
approach is its complexity – it cannot be used with-
out specialized software. There are several commer-
cial codes that employ this approach (the Rate code 
developed by BatchCad [8], NETCH kinetics soft-
ware [6] and some others). The ForK and DesK pro-
gram packages developed by ChemInform Ltd., are 
other instances. Specifically, all the examples pre-
sented in the paper were obtained by applying these 
packages. 

CONCLUSIONS 
Design of reaction kinetics is a complex multifac-

eted problem. Its solution requires a deep understand-
ing of chemical kinetics and the experimental meth-
ods to produce the data, understanding of the mathe-
matical aspects of reaction kinetics, and a clear un-
derstanding of how the resulting kinetic model will 
be applied.  Many of the required steps cannot be 
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completely formalized, so the mathematical methods 
should be combined with experience and intuition of a 
researcher.  

One of the key stages in kinetic model creation is the 
choice of the most appropriate model type. It has been 
shown that only the proper implementation of this stage 
can guarantee correctness of the results. Very often, ad-
ditional data may be required for validation or selection 
of a model. Therefore, one must perform additional ex-
periments to get the required data. Thus, in practice, ki-
netics evaluation is an iterative procedure. 

The validity of results obtained in one step affects 
the results in subsequent steps. Thus, every step should 
be given the required attention and effort. 

NOMENCLATURE 
t – time; s 
r – rate of a stage; s-1 
k – rate constant of a reaction or stage; s-1 
k0 –pre-exponential factor; 
E – activation energy; kJ/mol 
n – reaction order; 
z – autocatalytic constant; 

)(f α  - kinetic function, defines dependency of re-
action rate on the conversion; 

m – mass; kg 
R – gas constant; J/(mol*K) 
T – temperature; K 
Q – specific heat generation; kJ/kg, kJ/mol 
G – specific gas generation; mol/kg, mol/mol 
Q∞ – specific heat of a reaction or stage; kJ/kg, 

kJ/mol 
G∞ – specific gas generation of a reaction or stage; 

mol/kg, mol/mol Y(t) – response of a reacting system;  
Yexp – experimental response;  
Ysim – simulated response 
P  - vector of kinetic parameters of a reaction 

 model; P ={k0, E, n, Q∞, …} 
cp – specific heat of a substance; J/(kg*K) 
ν, β – stoichiometric coefficients; 
α, γ – degree of conversion; 0<α, γ <1 
[A] – concentration of A species, mol/m3 
ϕ – heat inertia of the calorimetric cell  

(phi-factor); 
ss

bb
mc
mc1+=ϕ  

U – heat transfer coefficient; W/(m2 K) 
S – surface of heat exchange, m2 
Indices: 
e - environment 

o – initial value of a variable 
s –sample 
b – calorimetric cell 
onset – conditions at the beginning of adiabatic 

mode in adiabatic calorimetry. 
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